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Abstract: Sentence similarity detection involves computing the degree of semantic similarity between any given 

pair(s) of sentences, even if the sentences do not have similar structure. Sentence similarity is an integral part of a large 

number of applications such as text summarization, information retrieval, text mining and artificial intelligence, to 

name a few. The paper introduces the concept of sentence similarity, discusses its applications and its importance. The 

current methods used to obtain sentence similarity are subsequently discussed. Then, an approach that uses ensembling 

to detect sentence similarity is proposed in the paper. 
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I. INTRODUCTION 

 

With the increasing ease of access to the World Wide Web, the amount of data being generated from users’ interaction 

on the web or otherwise is growing at a rapid pace [1]. A significant portion of this data is in textual form, resulting in 

an increasing interest in the field of Natural Language Processing (NLP). Sentence similarity detection is one of the key 

problems in NLP. Sentence similarity detection deals with computation of the degree of semantic similarity between 

any given pair(s) of sentences. It is an important component in several applications such as text summarization,  

question-answer systems, information retrieval, text mining and artificial intelligence, to name a few. In text 

summarization, in order to convert a large document to a concise summary, it is essential to know the sentences that are 

similar in meaning, and hence are redundant and can be removed. Similarly, question-answer systems need to match 

the question entered with the questions or answers in the system. In information retrieval systems, the search query 
must be converted to a semantically equivalent query that the information retrieval system understands. In text mining, 

sentence similarity is used to extract otherwise unnoticed knowledge from text databases [2]. In artificial intelligence 

applications such as chat bots, where the system tries to mimic conversations with a human, it is necessary for the 

system to detect the similarity of the sentence typed in by the human with the sentences in its knowledge base, whose 

responses it knows with high degree of certainty. Given the large number of applications that rely on sentence 

similarity, it has become an important topic of research. However, determining the semantic equivalence of sentences is 

quite difficult given the large degree of variance in natural language, because of which, sentences which essentially 

mean the same can be constructed in a large number of ways. 

 

II. RELATED WORK 

 
Some of the techniques for sentence similarity use statistical methods such as Latent Semantic Analysis on a big corpus 

or rely on a thesaurus like WordNet [3]. Latent Semantic Analysis is an NLP technique that analyzes relationships 

between a collection of text documents and the terms contained in them by generating a set of concepts related to the 

terms and the text document [4]. WordNet is a text database containing English words grouped into sets of synonyms. 

These sets are linked to each other via semantic relations [5]. Word Overlap Measures is another technique that is used 

to determine sentence similarity. It is a combinatorial similarity measure that computes the similarity between sentence 

pairs based on the number of words that the two sentences have in common. Term-Frequency Inverse Document 

Frequency (TF-IDF) is another technique used for sentence similarity where the text is converted into vectors in vector 

space and similarity between two pieces of text is determined by computing the cosine similarity between the vectors 

representing the two texts [6]. This paper presents an approach that uses ensembling for sentence similarity detection. 

The ensemble consists of 4 constituent predictive models, namely a Recurrent Neural Network, a Feedforward Neural 

Network, a Random Forest model and a Support Vector Machine. The ensemble aggregates the predictions made by the 
different constituent models by taking a weighted vote from them. 

 

III. SENTENCE SIMILARITY DETECTION USING ENSEMBLING 

 

A. Ensembling 

Ensembling involves generating a prediction that is a weighted aggregation of the predictions made by the collection of 

underlying constituent models. Often, the aggregated prediction made by the ensemble is more accurate than the 

prediction of any one single constituent model in the ensemble [7]. This is because a single model can have high 
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variability or biases that affect the accuracy of the model adversely. By combing a collection of related, but different 

models, one can limit the drawbacks of any individual model. Many machine learning algorithms get stuck in local 
optima when optimizing. This makes it difficult to find the best hypothesis, especially in scenarios where training data 

is small. By having a collection of predictive models in an ensemble, we can obtain a better approximation of the best 

hypothesis. 

 

B. Proposed Model 

In the proposed model, characteristics of the sentences such as sentiment detected in the sentences, named entities and 

phrases in the sentences, the cosine similarity between the sentences are extracted and used as features. In addition, a 

custom feature is generated, which classifies the sentences pairs into one of four categories based on the  

similarity/dissimilarity of the topics being discussed and the sentiments expressed towards those topics (positive, 

negative or neutral). These 4 categories are: 

 Same topic, similar sentiment towards the topic: 
Example:  

    Sentence 1: “The weather is excellent” 

    Sentence 2: “We have a really nice weather today” 

    Topic: Weather; Sentiment: Positive 
 

 Same topic, different sentiment towards the topic: 

Example:  

               Sentence 1: “The weather is good today” 

   Sentence 2: “We have terrible weather conditions today” 

   Topic: Weather; Sentiment: Positive, Negative 
 

 Different topic, same sentiment: 

Example: 

   Sentence 1: “The weather is superb” 

               Sentence 2: “The car is excellent” 

               Topics: Weather, Car; Sentiment: Positive 
 

 Different topic, different sentiment: 

Example:  
   Sentence 1: “The weather is nice” 

               Sentence 2: “The player did not perform well” 

   Topics: Weather, Player; Sentiments: Positive, Negative 

 

These features are then used by the four constituent models and subsequently the ensemble to make a prediction on 

whether the sentences can be considered to be semantically equivalent or not. The constituent models used are 

explained in detail below: 

1. A Recurrent Neural Network (RNN): RNNs are a type of neural networks where connections between units of 

the network form a directed cycle. They have been found to be very effective in quite a few applications, such as 

language modeling, text generation and machine translation. They have the ability to use their internal memory to 

process arbitrarily long sequences as input [8]. The RNN in the ensemble was implemented using Keras, a neural-
network library written in Python [9]. A Long Short-Term Memory (LSTM) architecture was used in the RNN to 

handle vanishing gradient problem. Categorical Cross Entropy was used as the loss function, and the optimizer used 

was the Adam optimizer. The Adam optimizer is an extension to the classical stochastic gradient descent, which is used 

to update weights assigned to units in the network iteratively [10]. A Softmax function was used to generate the final 

output of the RNN. It is a normalized exponential function which is very often used in the last layer of neural network 

classifiers. 

2. A Feedforward Neural Network: They are neural networks where layers of perceptrons are stacked together. 

The connections between the perceptrons are acyclic. Every perceptron in a layer is connected to the perceptrons in the 

next layer, resulting in unidirectional movement of information from the input layer to the output layer through hidden 

layers. In order to compute the error contribution of each perceptron in the neural network, backpropagation algorithm 

is used. The Feedforward Neural Network was implemented using PyBrain, a modular machine learning library written 
in Python [11].  

3. A Random Forest Model: Random Forests are used for machine learning tasks such as classification and 

regression. They generate multiple decision trees, each of which will make a prediction for the given input, and take the 

mode (the prediction that appears most) of the predictions made by the decision trees. The Random Forest was 

implemented using Scikit-Learn, a machine learning library in Python [12].  



IARJSET 
ISSN (Online) 2393-8021 

ISSN (Print) 2394-1588 
 

International Advanced Research Journal in Science, Engineering and Technology 

ISO 3297:2007 Certified 

Vol. 4, Issue 8, August 2017 

 

Copyright to IARJSET                                DOI10.17148/IARJSET.2017.4819                                                        126 

UGC Approved Journal 

4. A Support Vector Machine (SVM): A SVM is a supervised learning algorithm which can be used for both 

regression and classification tasks. It is a non-probabilistic linear classifier, which can also be used for non-linear 
classification tasks by employing kernels. It is used in a variety of applications in NLP such as spam detection, 

sentiment analysis and text categorization. The SVM was implemented using the Scikit-Learn machine learning library. 

A Radial Basis Function (RBF) kernel was used for the SVM. It is a popular kernel function that is used for SVM 

classification. 

 

The above ensemble model is trained on a curated training set consisting of 200 sentence pairs that fall into different 

categories based on the topic being discussed and the sentiment being expressed on those topics. After training the 

ensemble, for every test sentence pair, the ensemble, gathers the predictions from the constituent models and predicts 

the sentences pairs to be similar/ dissimilar based on the number of votes for similarity/dissimilarity obtained from the 

constituent models. 

 

IV. CONCLUSION 

 

The number of users connected to the Internet is growing at a rapid rate. Consequently, the data collected on a day to 

day basis is also increasing at a pace that makes it impossible for humans to analyse the data manually. With 

advancements in technology, leading to faster and better hardware, it has become possible for humans to train machines 

to learn and analyse large volumes of data, being generated at a high velocity and in large variety. Given that a 

significant percentage of the data generated is in textual form, there is an increasing push towards developing NLP 

technology that can help uncover hidden insights in such large bodies of text. Detecting sentence similarity has become 

a crucial step in several machine learning algorithms. The multitude of ways humans can convey essentially the same 

message, using different sentence constructions and expressions, makes computing the semantic similarity between 

sentences an open problem that is difficult to solve. This paper discusses the problem of sentence similarity detection, 

provides an overview of the methods that have been employed so far to solve the problem and proposes an ensemble 
approach to tackling the same problem. Ensembling has been used with great results in quite a lot of machine learning 

applications, and there are statistical, computational and representational reasons for the same.  It aims to reduce the 

error in hypothesis caused due to the limitations of a single predictive model, by having a collection of predictive 

models and aggregating their predictions to approximate the best hypothesis. The paper describes the ensemble 

approach used by the author to detect sentence similarity. The ensemble consists of four constituent models, namely, a 

recurrent neural network, a feedforward neural network, a random forest model and a support vector machine model. 

The ensemble model produced performance comparable to and in some instances better than some of the current 

approaches used for sentence similarity detection. Hence, it can be considered as a viable option in applications which 

need to determine sentence similarity. 
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